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LETTER TO THE EDITOR 

Exact results for multiple state cellular automata 

M Y Choit and B A HubermanS 
T Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 
$ Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA 

Received 17 July 1984 

Abstract. We present exact results for the dynamics of one-dimensional, probabilistic, 
multiple state cellular automata which map into generalised Potts models on anisotropic 
triangular lattices. We obtain analytic expressions for both the time evolution of their 
activity and the asymptotic behaviour of the correlation functions. 

In recent years, cellular automata have attracted much interest since they seem to 
embody the time evolution of systems with many degrees of freedom (von Neumann 
1966, Aladyeff 1974). The realisation that automata with binary states have a correspon- 
dence with the static properties of Ising-like systems has led to a number of studies 
which have improved our understanding of both sets of systems (Welberry and Gal- 
braith 1973, 1975, Verhagen 1976, Welberry 1977, Enting 1977a, b, 1978a, b, R u j h  
1982, Domany and Kinzel 1983). Recently it has also been recognised that the 
equilibrium, static properties of a Potts model (Potts 1952, Wu 1982) can be mapped 
into the time evolution of a lower-dimensional automaton with multiple states (Ruj6n 
1984, Domany 1984). This in turn raises questions about the dynamics of such automata, 
about which little is known. 

This letter presents some exact results for the dynamics of one-dimensional multiple 
state cellular automata which correspond to Potts models in triangular lattices with 
anisotropic two-site interactions and three-site interaction for down pointing triangles. 
The approach used in this paper can be readily generalised to cover more complicated 
cases. Besides their intrinsic value, these results show that the master equation approach 
is of great use in treating the dynamics of complicated systems with many degrees of 
freedom. 

Consider a chain of N cells each of which can have q possible states. We will 
represent the state of the cell on the ith site by the variable a, = 1,2, .  . . , q ( i  = 
1,2, . . . , N ) .  The state of the system can then be characterised by the N-tuple number 
(a , ,  a2,. . . , r.,.,). It is assumed that at even time t = 2n(n = 0, 1 ,2 , .  . .) odd indexed 
sites can change their states according to probabilities that depend only on the states 
of their neighbouring (even indexed) sites at time t - 1 = 2n - 1, while the even indexed 
sites do not change their states. Similarly, at odd times t = 2n + 1 ( n  = 0, 1 , .  . .) only 
even indexed sites can change their states. Thus the time development of the whole 
system can be pictured by the space-time diagram shown in figure 1. 
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Figure 1. Space-time diagram of a one-dimensional cellular automaton. 

To describe the time evolution of such a system we write down the master equation 
for P(a, t ) ,  the probability that the system is in the state a = (ul, u2, . . . , uN) at time 
2:  

P(a, t )  - P(a, t - 1)  = -E [ p ( a  + P ) P ( a ,  t - 1)  - P ( P  + a )P(P,  t - 1 )I, 
P 

where the transition probability p ( a  + p )  is the conditional probability for the whole 
system and which is given by the product of the individual conditional probabilities 

P ( .  + P ) = P ( P ,  t - 1 ) = n ’ P ( U I l a i - I ,  u i+i )6ui - , ,u i -1  (2) 
i 

with /3 (ai, U;, . . , U&). The prime in the product implies the restriction i + t = odd. 
To get an equation for (6pak)=:I;I,,) 6pukkP(al, u2, .  . . , uN, t ) ,  which is just the 

probability that site k is in the state p at time t ,  we multiply equation (1) by 6pffk 
and sum over a, i.e., sum over all ai’s obtaining 

(6p‘k)r = (8puk)r-l 

If we now use equation (2) and note that X u i p ( u ~ [ u i - l ,  = 1, we obtain 

Similarly, multiplying equation (1) by Sr,6,,, (b - k( = even) and summing over a 
gives the equation for (6pu,6pvk)r, i.e. the probability that sites j and k are in the same 
state p at time t :  
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Furthermore the normalisation condition 8,; p ( ~ j l a ~ - ~ ,  ai+l) = 1 gives the equality 

(4 - 1 ) U  + c = q~ + bl + b2 = 1 (7) 

which implies that only two of the four parameters (a, b,,  bl ,  c) are independent. This 
specification corresponds to the simple form 

p(a:(ai-,, ai+\) = a + b 1 6 m ; s 8 - ,  +b2Su;u,+,. (8)  

Equation (8)  allows us to write equations (4) and ( 5 )  in the explicit form 

where 

A,$( t 1 3 a2 + ubi [xy- 1 ( t )  + xP- I ( t)I + ab2[~?+ I ( t )  + XP+I ( t ) l .  (11) 

To solve equation (9), we considerthe case k + t = odd and write equation (9) in the form 

xP( t )  = U + bixt- 1 ( t - 1 ) + b&+i ( t - 1) 

= U (  1 + bl + b2) +2bIb,x:( t -2) + b : ~ c - 2 (  t -2) + b:~c+2(  t -2) ,  (12) 

where only odd or even indexed sites (but not both) are involved. 
Introducing the generating function 

F”(A, t ) = z ’ A l / y T ( t )  (13) 
I 

where the prime implies the restriction I + t = odd, and A can have any value for the 
case of infinite chains ( N + o o )  (for the case of finite rings with periodic boundary 
condition, A = l ) ,  we get the equation for the generating function 

F”(A, t )  = ~ ( 1  +bI + 62) E’ A ’  +(blA + b2A-1)2Fw(A,  t -2)  
I 

= a ( l + b 1 + b 2 ) E ’ A ’ [ r ’ ~ - 1  (blA +b2A-1)2P  
I p = o  

which leads to the result (k + t = odd) 
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In the above equation, the first term is absent ( a  = 0) if b, + bz = 1. The final expression 
is then given by 

k = odd 

For b, + b, < 1, this has the asymptotic behaviour 

1-w a 1 
1 - ( b l  + b 2 ) = 9 )  x P ( t )  - x = 

which is the obvious result for the disordered state. We next solve equation (10). We 
will consider only the equilibrium solution, assuming that R$( t )  goes to the equilibrium 
value R$) in the asymptotic limit (?-,a). We try the form (keeping in mind that 
- kl = even), 

which satisfies the condition 

Upon substituting equation (20) into equation ( 1  1 )  in the asymptotic limit, we get 

and 

which allows us to write the following expression for the correlation function, 

As can be seen, it decays exponentially unless 7 = 1 or a = 0. Thus, the system has a 
phase transition only at the point a = 0, 61 + b2 = c = 1. 

Finally, we consider the time retarded correlation function (b - k - t J  = even) 

where it is understood that (8prrk)h = 6pak. Equation (22) together with equations (16) 
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and (21) leads to the desired expression, i.e., 

G$( t )  = lim (apuj( ro)Sp,(to+ t ) > -  q-' 
ro+m 

t = even 

which has the asymptotic behaviour 

a Z O  
a =O. 

The time development of one-dimensional multistate cellular automata, which we 
studied above, can be mapped into a two-dimensional Potts model (Rujhn 1984, Domany 
1984). If we regard the space-time lattice shown in figure 1 as a two-dimensional 
lattice, the probability of the whole two-dimensional configuration a = {ao, a l ,  . . . , aM} 
can be expressed as a product of conditional probabilities 

If we write the individual conditional probabilities ~ ( a j l a ~ - ~ ,  ai+l) in the form 

p ( c ~ l l a ~ - ~ ,  ai+l) = A exp(KISajai-l +K2SalGi+l +LSalai-lai+l) (26) 

where equation (6 )  gives the relation 

A = a, 

e L = c a / ( a  + b , ) ( a + b , )  

eKl = 1 + b,a- l ,  eK2= 1 +b2a-I,  

then with equation (2) we get P(a) in the form familiar in equilibrium statistical 
mechanics 

p ( a ) a e - @ "  

with the Hamiltonian 

The first and second sums are to be done over two slanted bonds, respectively, and 
the third one is over down pointing triangles. Thus we get a Potts model in a triangular 
lattice with anisotropic two site interactions ( K , ,  K2, 0) and three-site interaction (L) 
for down pointing triangles. Equation (16) can be interpreted as giving the expectation 
value for a given boundary condition. Therefore we can solve for boundary explicitly. 
Within this framework equation (23) gives the correlation function between any two 
sites only if the boundary effect can be neglected. The critical point a = 0 found 
previously corresponds to T = 0 with ferromagnetic two-site interaction and antifer- 
romagnetic three-site interaction, respectively. 

This approach can be generalised to cover more complicated systems. Furthermore, 
we can specify the conditional probabilities more generally than in equation ( 6 ) .  In 



L770 Letter to the Editor 

this case, there will arise more terms such as the external field in the corresponding 
Potts Hamiltonian other than those in equation (28). For example, we can make two 
channel problems in which both even and odd indexed sites can change their states 
at the same time. Also one can make the conditional probabilities depend on the states 
of themselves at previous time as well as those of neighbouring sites. In these cases, 
the corresponding Potts model will be different in either lattice structure or interaction 
type. Even in these more general cases, one can get some exact information for some 
subsets of the whole possible sets. 

The authors are grateful to Professor E Domany for useful conversations. This work 
was supported in part by the Office of Naval Research contract NOOO14-82-0699. 
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